713 research outputs found

    Design of an electrical floor heating panel manufactured by transfer foil technology

    Get PDF
    Abstract. In this thesis, a heater-integrated floor material and its possibilities in the field of floor heating were examined. The heater was designed to be manufactured by transfer foil technology. LTSpice and COMSOL simulation tools were utilized to model power losses and heating power, and three different heater versions were designed with Altium designer, and their simulation results and other properties of the heaters were compared. The main goal of the work was to find out the possibility of making floor heating for large surface areas from these heating panels and it was found that it would be possible to make over 100m² surfaces with under 1 ºC tolerance for the desired heating temperature.Siirtokalvotekniikalla valmistettavan sähköisen lattialämmityspaneelin suunnittelu. Tiivistelmä. Tässä työssä tarkasteltiin siirtokalvotekniikalla valmistettavan lämmitysvastuksen integroimista lattiamateriaaliin ja sen mahdollisuuksia lattialämmityksen saralla. Työssä hyödynnettiin LTSpice- ja COMSOL-simulointityökaluja lämmitystehon ja tehohäviöiden mallinnukseen ja piirrettiin Altiumilla kolme eri lämmitinversiota ja vertailtiin niiden simulointituloksia sekä lämmittimien muita ominaisuuksia. Työn tärkeimpänä tavoitteena oli selvittää mahdollisuutta tehdä lämmityspaneeleista lattialämmitys suurille lattiapinta-aloille. Saatiin selville, että näillä lämmityspaneeleilla olisi mahdollista tehdä yli 100m² lattiapintoja alle yhden asteen toleranssilla halutulle lämpötilalle

    Fast Label Extraction in the CDAWG

    Full text link
    The compact directed acyclic word graph (CDAWG) of a string TT of length nn takes space proportional just to the number ee of right extensions of the maximal repeats of TT, and it is thus an appealing index for highly repetitive datasets, like collections of genomes from similar species, in which ee grows significantly more slowly than nn. We reduce from O(mloglogn)O(m\log{\log{n}}) to O(m)O(m) the time needed to count the number of occurrences of a pattern of length mm, using an existing data structure that takes an amount of space proportional to the size of the CDAWG. This implies a reduction from O(mloglogn+occ)O(m\log{\log{n}}+\mathtt{occ}) to O(m+occ)O(m+\mathtt{occ}) in the time needed to locate all the occ\mathtt{occ} occurrences of the pattern. We also reduce from O(kloglogn)O(k\log{\log{n}}) to O(k)O(k) the time needed to read the kk characters of the label of an edge of the suffix tree of TT, and we reduce from O(mloglogn)O(m\log{\log{n}}) to O(m)O(m) the time needed to compute the matching statistics between a query of length mm and TT, using an existing representation of the suffix tree based on the CDAWG. All such improvements derive from extracting the label of a vertex or of an arc of the CDAWG using a straight-line program induced by the reversed CDAWG.Comment: 16 pages, 1 figure. In proceedings of the 24th International Symposium on String Processing and Information Retrieval (SPIRE 2017). arXiv admin note: text overlap with arXiv:1705.0864

    Composite repetition-aware data structures

    Get PDF
    In highly repetitive strings, like collections of genomes from the same species, distinct measures of repetition all grow sublinearly in the length of the text, and indexes targeted to such strings typically depend only on one of these measures. We describe two data structures whose size depends on multiple measures of repetition at once, and that provide competitive tradeoffs between the time for counting and reporting all the exact occurrences of a pattern, and the space taken by the structure. The key component of our constructions is the run-length encoded BWT (RLBWT), which takes space proportional to the number of BWT runs: rather than augmenting RLBWT with suffix array samples, we combine it with data structures from LZ77 indexes, which take space proportional to the number of LZ77 factors, and with the compact directed acyclic word graph (CDAWG), which takes space proportional to the number of extensions of maximal repeats. The combination of CDAWG and RLBWT enables also a new representation of the suffix tree, whose size depends again on the number of extensions of maximal repeats, and that is powerful enough to support matching statistics and constant-space traversal.Comment: (the name of the third co-author was inadvertently omitted from previous version

    Suffix Tree of Alignment: An Efficient Index for Similar Data

    Full text link
    We consider an index data structure for similar strings. The generalized suffix tree can be a solution for this. The generalized suffix tree of two strings AA and BB is a compacted trie representing all suffixes in AA and BB. It has A+B|A|+|B| leaves and can be constructed in O(A+B)O(|A|+|B|) time. However, if the two strings are similar, the generalized suffix tree is not efficient because it does not exploit the similarity which is usually represented as an alignment of AA and BB. In this paper we propose a space/time-efficient suffix tree of alignment which wisely exploits the similarity in an alignment. Our suffix tree for an alignment of AA and BB has A+ld+l1|A| + l_d + l_1 leaves where ldl_d is the sum of the lengths of all parts of BB different from AA and l1l_1 is the sum of the lengths of some common parts of AA and BB. We did not compromise the pattern search to reduce the space. Our suffix tree can be searched for a pattern PP in O(P+occ)O(|P|+occ) time where occocc is the number of occurrences of PP in AA and BB. We also present an efficient algorithm to construct the suffix tree of alignment. When the suffix tree is constructed from scratch, the algorithm requires O(A+ld+l1+l2)O(|A| + l_d + l_1 + l_2) time where l2l_2 is the sum of the lengths of other common substrings of AA and BB. When the suffix tree of AA is already given, it requires O(ld+l1+l2)O(l_d + l_1 + l_2) time.Comment: 12 page

    Document Retrieval on Repetitive Collections

    Full text link
    Document retrieval aims at finding the most important documents where a pattern appears in a collection of strings. Traditional pattern-matching techniques yield brute-force document retrieval solutions, which has motivated the research on tailored indexes that offer near-optimal performance. However, an experimental study establishing which alternatives are actually better than brute force, and which perform best depending on the collection characteristics, has not been carried out. In this paper we address this shortcoming by exploring the relationship between the nature of the underlying collection and the performance of current methods. Via extensive experiments we show that established solutions are often beaten in practice by brute-force alternatives. We also design new methods that offer superior time/space trade-offs, particularly on repetitive collections.Comment: Accepted to ESA 2014. Implementation and experiments at http://www.cs.helsinki.fi/group/suds/rlcsa

    A Faster Implementation of Online Run-Length Burrows-Wheeler Transform

    Full text link
    Run-length encoding Burrows-Wheeler Transformed strings, resulting in Run-Length BWT (RLBWT), is a powerful tool for processing highly repetitive strings. We propose a new algorithm for online RLBWT working in run-compressed space, which runs in O(nlgr)O(n\lg r) time and O(rlgn)O(r\lg n) bits of space, where nn is the length of input string SS received so far and rr is the number of runs in the BWT of the reversed SS. We improve the state-of-the-art algorithm for online RLBWT in terms of empirical construction time. Adopting the dynamic list for maintaining a total order, we can replace rank queries in a dynamic wavelet tree on a run-length compressed string by the direct comparison of labels in a dynamic list. The empirical result for various benchmarks show the efficiency of our algorithm, especially for highly repetitive strings.Comment: In Proc. IWOCA201

    From Theory to Practice: Plug and Play with Succinct Data Structures

    Full text link
    Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.Comment: 10 pages, 4 figures, 3 table
    corecore